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Introduction

The research center activities during the reporting period have been

focused in three areas_

These are:

(1) Developing the necessary equipment and test procedures

to support the testing of 8PSK-TCM through TDRSS from
the WSGT2

(2) Extending the theorical decoder work to higher speeds

with a design goal of 600MBPS at 2 bits/Hz 3

(3) Completing the initial phase of the CPFSK Multi-H research

and determining what subsets (if any) of these coding

schemes are useful in the TDRSS environment.

Results

During the reporting period, January 1992 to July 1992,

significant progress was made in the three areas discussed in the

introduction. This report will summarize the WSGT test and the high

speed decoder work while focusing upon the Multi-H work.

The equipment for the WSGT TCM testing has been completed

and is functioning in the lab at NMSU. Measured results to date

indicate that the uncoded system with the modified HRD and NMSU

$ymbol sync operates at 1 to 1.5 dB from theory when processing

,_mcoded 8PSK. The NMSU pragmatic decoder when combined with

these units produces approximately 2.9 dB of coding gain at 10 -.5

B ER. L The testing of this equipment will move to the WSGT in late

July.- The test results and the theorical analysis of this work will be

the focus of the next 6 month report.

Th high speed decoder effort has continued during the

reporting period. Mike Ross's Ph.D. work has focused on this effort.

Mr. Ross will receive his Ph.D. in August and the detailed design of a

high speed 16 state TCM codec will be complete at that time. The

intent of the program is to investigate how fast this decoder design

can operate if implemented in various VLSI technologies. This work

will take place in the fall 1992. The design which has been

developed by Mr. Ross is a pipelined technique with a unique

approach to the metric calculations that should result in much faster

operation than is possible using metric looking tables. The details of



this design and its projected performance will be included in the
January report.

Our study of CPFSK with Multi-H coding has reached a critical
stage. The work to date and the detailed results are contained in the
next section. The principal conclusions reached in this activity are:

(1) No scheme using Multi-H alone investigated by us or found
in the literature produces power/bandwidth trades that
are as good as TCM with filtered 8PSK.

(2) When Multi-H is combined with convolutional coding, one
can obtain better coding gain than with Multi-H alone but
still no better power/bandwidth performance than TCM
and these gains are available only with complex receivers,

(3) The only advantage we can find for the CPFSK schemes
over filtered MPSK with TCM is that they are constant
envelope. However, constant envelope is of no benefit in a
multiple access channel and of questionable benefit in a
single access channel since driving the TWT to saturation
in this situation is generally acceptable.

(4) Based upon these results the center's research program
will focus on concluding the existing CPFSK studies and
closing out this task.



AN OVERVIEW OF

MULTI-H RESEARCH AT NMSU



MULTI-II PIIASE MODULATION

Multi-h Background

Multi-h phase modulation is a technique for transmitting information through the phase com-

ponent of a carrier wave in such a way that the phase changes continuously over the interval

to prevent jumps in the phase component.

The general form for a multi-h continuous phase modulation signal is

! 2E_
s{O = + 4,0

q

where

E, is the energy of the signal

T, is the time length of the signaling interval

fc is the carrier frequency

,b. is the arbitrary initial phase of the carrier

• (t,a) is the information carrying phase function given by

t

o,t.=, =,=f f¢._

where

oq is the data value

hi is the phase modulation index

g(t) is the frequency pulse-shape function which determines how the phase changes
over time.

Many pulse shaping functions are available. Some of the more common one are: LREC

(rectangular pulse shape function with pulse length L), and LRC (raised cosine with pulse

length L) [17]. A commonly-used and easy-to-implement pulse shape function is 1REC.

Using the 1REC pulse shaping function and using the property that the function is periodic

(as is the cosine function), then the signal can be written as

Y_ _- 2E _xhi t
--:-_cos{2n[f d +--_(=--(i- 1))1 + O)

(i-1)TS < t g iT s
i-I

(fP i = _ E O_j.l'lj

= -¢o



The quantity (I,, is interpreted as the excess phase due to all previous information digits.

To receive the signal, one forms all ideal received signals, S_j which are written as

I2e, _,h,s0.= =-_t2,_t(t'c +aw) +%1
1; "-'s

where ¢ii is the excess phase due to previous information digits over all possible received

signals, j and aj is all possible received data.

Without noise, the received signal should be chosen to be the S0 such that

Yi - S_j = 0

where Yi is the actual received signal. With noise, the Sij should be chosen to minimize this
difference.

To aid in this decision, the innerproduct (correlation) between Y_ and S_ is formed, that is

it,

Po.= (r,,s_)= f r,xoso_oat
qq)r,

The signal S_j that gives the largest metric (best correlation),/3_j, is then chosen as the re-

ceived signal.

Using the form for the ideal signal S_jas

S_/-- I2E a.h i--*{cos[2nt_+ _ ')]cos[¢,,]-
T, 2T,

f

a basis expansion for data output, % , can be formed using the basic functions that make up

S_j:

where j -- 1, 2, . . . , M, where M is the number of different output data. For binary

output % = + I, -1 and the basis functions are:

An orthonormal basis is then formed to expand the received signal into four coefficients.



2E "_
h_)]

+ C_j _-_s

hi

2E, h_

2E, h_

2E_cos[2_t(f_--2--_-)1L

2E'sin[2nt_- hi

These coefficients are given by:

for % = +1,

all = cos(,I,.,)

a2i = -sin(_.3

a3i = 0.0

a4i : 0.0

or by:

for %

where

and,

= -1,

ali = Cn cos(l'-3 + C2i sin(_,)

a2i = C2i cos(¢'3 - Cu sin(O3

a3i = Di cos(,I,.3

a4i = -Di sin('I'3

,I,_ = the phase state during time t,

iT, < t < (i+l)T,



eli

sin(2_ hi)

2zh i

[ 1- cos(2zhi)]
C2i =

2r_h i

- c?,

These coefficients are then used to calculate all possible metrics for each possible phase state

and each possible input. The largest metric for each phase state, the data input, and the

trellis path are then stored. As more data comes in, a cumulative metric is kept along with

the appropriate trellis path and data bits. After a specified time interval, a decision is made

as to the appropriate path based on the cumulative metric and data is output from the appro-

priate trellis path. The value chosen in the first part of our multi-h work was taken as 5

times the constraint length of the code. The constraint length is the number of time intervals

it takes for the trellis to have its first merge. That is, starting at one particular phase state,

two different paths can be taken to arrive at the same point. The longer the constraint

length, the less the chance of error and the better the code. Through recent simulations, it

has been found that if the trellis length (or memory length) is taken too long, then errors can

be introduced due to longer merge paths which may then give the same result as the correct

path[l]. See also the simulation results in Table 7. Hence, there is an optimal length for the

trellis that will need to be found for each multi-h scheme used. But complexity of the trellis,

and complexity of calculations are trade-offs. To offset the complexity of the calculations, all

possible four-tuple vectors consisting of the coefficients can be calculated ahead of time.

This vector can be given by:

A i = (al, , a2,_ a3i, a4i)

This A vector over the ith time interval, is in a four dimensional space. For multi-h values

of h = (1/2, 3/4), eight four-dimensional vectors are stored at each stage of the trellis. Each

vector represents the possible transition on a symbol for a given phase state. The trellis for

the h = (1/2, 3/4) decoder consists of 4 different stages. The trellis would then repeat these

four stages until the desired trellis length is reached. Using the 4 stage trellis, a total of 32

vectors are needed and stored ( or the 8 needed vectors can be calculated each time) to repre-

sent all possible transitions and stages. As noise is added to the system, the received vector

is projected onto all vectors stored in the appropriate stage and a metric is calculated and

stored to be used for the maximum likelihood sequence estimator (viterbi). The above simu-

lation procedure utilizes the geometric representation of the multi-h wave form rather than

the time dependent representation. In so doing, the simulation time is reduced and the mem-

ory requirement is minimized.

In general [20], for M-ary data, K values of h can be used.

that

hi = Li/q

The values of _ are selected so



whereL_is the sequencei = 1, 2, ..., K andq are integerssuchthat q _2_>MKand the
weightedslimsof the h+ rnust not be an integer value. That is,

a,t h + a21h + ... + aKhK _ integer

for a_, a2, "", aK C {0, 1, ..., M-l}.

The number of phase states per time period, T,, is equal to q. The distance between the

phase states on the trellis is 2,-/q.

The purpose behind Multi-h is to increase the constraint length of the code, thereby decreas-

ing the probability of error, while keeping the bandwidth small, or reducing bandwidth by

choosing appropriate values of h. Since Multi-h is a type of CPM (continuous phase modu-

lation), then it has constant envelope as well as improved detection efficiency due to intrinsic

memory [14]. Many schemes of multi-h modulation have been investigated [1-20]. A sum-

mary of much of the current work can be found in [15]. High coding gain codes consist of 3

or 4 h's with q values of 13 to 16 (giving rise to large trellises due to the many possible

phase states). The highest achieved coding gain is 3.66 dB [151, with 99.0% bandwidth of

0.85. Bandwidth efficient codes consist of 2 to 4 h values with q values 8 to 16. The cod-

ing gains here are reduced to 2.19 dB with 99.0% bandwidth of 0.59 [15]. The summary

tables and figures are reproduced in Figure I, along with a comparison of some of the best

known multi-h CPFSK schemes [17]. The schemes for the multi-h are given below:

Table I. Best known multi-h CPFSK schemes [17]

Scheme I h_ h 2 d2min 99% bandwidth

A 0.4 0.46 4.8 1.13

B 0.25 0.29 2.8 0.84

C 0.25 0.23 2.0 0.73

D 4/16 3/16 1.6 0.67

Fonseka and Davis [8], have done multi-h work using 2 values of h where the h's are re-

peated in a particular pattern like: ( h, , h_ , h 2 ) or ( ht , h_ , h t , h 2 ). Short rate 1/2

convolutional coding was also added to this patterned multi-h to obtain higher coding gain.

The highest normalized squared minimum distance, d2mt, for v --- 1 was 4.495 with h's of

(0.2, 0.2,0.3) and for v = 2 , d2m_ = 5.151 for h's of (0.25,0.25, 0.25, 4/9). ( v = k-l).

Only one simulation was run to find optimum memory length (trellis length) and to check

performance with d2m_. The simulation approached the d2,,_ bound as Eo/No is increased [8].

Based on the summary of results in [i5], the increased complexity of the multi-h schemes is

not worth the small improvement in power and/or bandwidth. The Power Bandwidth trade-

off for m-ary multi-h linear phase schemes is taken from [10] and re-produced here in Figure

2.
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Figure 1 Summary of Multi-h results [15,17]
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Much work has_flsobeendoneusingconvolutionand continuousphasemodulation. Here
manysinglevaluesof h havebeenusedto find theoptimal valuesof h, theoptimal mapping
schemesand the optimal codest'or different ratecodes,for variousvaluesof u
[2,5,7,10,1 l, 12,14,16,17,181. In a summarizingpaper,Andersonand Sundberg[3], show
that gainscanbe madein theconstantenvelopecontinuousphasemodulationby usingpar-
ticular h values, codingschemesandraisedcosinephasefunctions. The resultsare repro-
ducedin Figure 3. To achievegains,one needsto increasethecomplexityor have a trade-

off between the power and the bandwidth. Table 2 [17], shows several different coding

schemes.

Table 2. Power, Bandwidth and Complexity for several Coding Schemes[18]

system h u _/No for bandwidth complexity

p= 10 +

R=4/5 2/15 4 5.0 dB 1.25 240

32 CPFSK

R=3/4 2/15 4 6.0 dB 0.95 240

16 CPFSK

R=2/3 4 7.0 dB 0.65 16

8 PSK

R=2/3 1/10 4 9.5 dB 0.65 320

8 CPFSK

4-PSK 10.5 dB 0.65 I

MSK 10.5 dB 1.18 1

It can be seen that as the power is decreased, the bandwidth is increased. Still, the gains

over QPSK (4 PSK) may not be worth the effort since the gains are minimal. Gains of up

to 6.5 dB (with h= 1.38) can be achieved using the raised cosine phase, but the bandwidth is

more than doubled [6]. Further development of non-linear phase continuous phase modula-

tion (CPM) by Fonseka and Mao [9] has found a non-linear coded CPM scheme with 4.5 dB

improvement over MSK (minimum shift keying).

It is now clear that multi-h alone is not going to give the gains we had hoped for. Convolu-

tionaI coding searches over various h's has also been completely examined for values of v <

4. Higher rate codes and higher u values show promise for added gains, but also added

complexity [17]. A summary of results for various rates, and v are reproduced in Figure 4

[2,3]. Multi-h combined with convolutional coding may also give some gains over QPSK

[171.

OF POCR f.'_!AL!T_
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Figure 11.28. Power-bandwidth

trade-off for some of the coded

eight-level CPF-"SK schemes con-

sidered in this chapter, v = 1, 2, 3,

and 4. The 99% power in band

definition of bandwidth is used. I
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level CPFSK schemes, II is the

upper bound for coded 8-level

CPFSK, and Ill is binary CPFSK.
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PROGRESS TO DATE:

A multi-h generator has been modeled and tested using the simulation laboratory facilities at

New Mexico State University. Also using the simulation laboratory, a correlation receiver
has been modeled and tested. The multi-h metric and trellis have been modeled and tested

using two h values of 1/2, and 3/4. The results have been consistent with the literature. No

advantage was seen in continuing this particular form of multi-h, so work was directed to-

ward combining convolutional encoding and multi-h. It is hoped that by expanding the trellis

to allow for the different convolutionaI states, that an increase in the minimum distance will

lead to greater coding gains. Work on a combined convolutional multi-h encoder/decoder

has been completed. The simulated encoder/decoder can handle rate l/g codes for values of

g ranging from 1 to 3, and various h values, allowing up to four different values of h to be

used. The decoder generates the decoding trellis associated with each of the different h's and

g values, allowing calculation of the minimum distance for each of the different set-ups.

The performance of the multi-h decoder has been simulated and the probability of symbol

error vs signal to noise has been obtained. A combination of convolutional encoding and

continuous phase has been simulated in an attempt to increase the minimum distance between

paths to reduce the probability of error. A rate 1/2 convolutional encoder has been simulated

along with continuous phase modulation using a constant h of 1/4. This simulation has

shown that the performance of the CPM scheme with rood index of 1/4 achieves that of MSK

(uncoded, h = 1/2) when the above convolutional encoder is incorporated. The set up of the

decoder is similar to that of the multi-h with minor changes to accommodate the convolution-

al encoder. The basic communication block diagram for convolutional multi-h is given in

figure 5.

"=-t-t=
' 1)

_ 13emod_A'$

Convolution_
& Multi-Ix --

Figure 5 - Convolutional Multi-h Communications System



The transmitted signal, S(t) is given by:

S(t) =

(/-Dr, ._t _ iT,

where ai is the convolutionally encoded data, hi is the multi-h parameter (the modulation in-

dex), fc is the carrier frequency in Hertz, T, is the length of time of the signalling interval

(the duration of the signal), i is the current time interval beginning with i=0 at starting time

t=0, and 4)i is the excess phase defined previously. The rectangular pulse shaping function [

t - (i-l)] / T over the time interval (i-l) T, < t < i T, is used to give a smooth transition

between the different phase states.

The oq are obtained from a k state convolutional encoder where k is number of memory cells

including the current input. Figure 6 is an example of a convolutional encoder with k=3.

The current input is stored in location i. The connections of the g functions with the memo-

ry sends the data in that file (0 or 1) into the binary adder. The actual connections determine

what type of convolutional code is used. Each g function will be a zero or a one. When

combined as g_ g2 .-. g, and converted from binary to a data code, this will give the coni,,o -

lutionally encoded data, _i • A common code is given in Table 3. In Figure 6, the output gl

takes the input in location i and i-2 and adds them modulo 2. The output g2 adds the data

in memory locations i and i-1 in binary. The transmitted signal is then corrupted by Add-

itive White Gaussian Noise. The received signal is passed through a system of matched

filters as seen in Figure 7 to produce expansion coefficients. There will be n = 2*2" (rig)

matched filters and coefficients for each data interval, where ng is the number of outputs

from the convolutional encoder (the number of g functions).

i i-1 i-2

gl

Figure 6 - Rate-l/2 Convolutional Encoder



Table 3. Output Code

gl g2 c_i

0 0 -3

0 1 -1

1 0 1

1 1 3

:Kt}

Otaio

Nomildtzla_

===_ A 1

===_A 2

===_ A 3

Figure 7 - Generation of Expansion Coefficients

A typical set of expansion functions is given as follows:

--_, ,_2,,fj ÷ ,,.p,)

= .[-_-2si_2_y,j+ =,,,h,)

where j = 1,3, . .., 2*2 '_ - 1, and oe = + 1, +3, .... etc to cover all possible outputs
from the convolutional encoder.

A trellis configuration can then be used to determine possible phases and convolutional states

to find the correlations between the received signal and all possible signals. An example

trellis for two modulation indices, h=(%, g) is given in Figure 8.
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When convolution is added to the trellis, then each phase is split into convolutional states as

well. For the encoder from Figure 8, and the example code given in Table 3, the input/out-

put table for all possible inputs is given in Table 4. Since the ith digit is the current data

point, Table 4 can be rewritten to give a next state form, given in Table 5.

Table 4. Encoder Output

0

0

0

0

i-1

0

i-2

0

gl

0

g2

0

0

-3

0

0

0

0

0

1 -1

I 3

1 3

1 -1

0 1

0 -3



Table 5. Next Slalc Table

current state next state given input = 0 next state given input =
1

i-2 i-1 i-2 state # state #

0 0 0 1 3

1 0 0 1 3

0 0 I 2 4

state

num-

ber
i-1

1 0

2 0

3 I

4 1 0 2

i-1 i-2

1 0

1 0

I I

1 1

Using this next state table, a convolutional trellis can be formed as in Figure 9. The convo-
lutional trellis and the multi-h trellis can now be combined into a convolutional multi-h trel-

lis, where each phase has a sub-trellis consisting of the convolutional trellis. An example

trellis can be seen in Figure 10.

2 0 2

3 0 3

4 4

Figure 9 - Convolutional Trellis



Phase

Value

Convolution

State

Trellis

1 0 0 0 0

2 o o o o

3 o o o o

nconv o o o o

1 0 0 0 0

2 o o o o

3 o o o o

nconv o o o o

1 0 0 0 0

2 o o o o

3 o o o o

nconv o o o o

Figure 10 Combined Convolution and Multi-
h Trellis



A metric (correlation betweenthe receivedsignalandall signalswhich could possiblybe
receivedduring the time interval) is calculatedfor eachpossibletransition. The metric used
is given by:

pu= f nosoo)_
Ci-1)r,

where i is the ith data point andj is overall possiblereceivedinputs, all possiblephase states
and all possibleconvolutionalstatesfor the ith data point. The Sij(Oare all possible received
signals. At each merge of the trellis, the path that gives the largest accumulated correlation

(metric), is selected as the path to continue on through the trellis. The associated data point

is also stored and carried along through the trellis. When the end of the trellis is reached,

the path with the largest correlation is selected as the correct one and the output is selected as

being the binary digit at that end of the path.

Simulation Program:

A BASIC program was written to accept several user parameters. The needed parameters

are: desired length of the trellis, the number of h's (modulation indices) to use, the number

of outputs from the convolutional encoder, the individual values of the modulation index, the

individual values of the encoder outputs (input in decimal), the number of data points to be

simulated, the common denominator of the modulation indices, and the desired signal to

noise ratio in dB to be simulated. The program then produces the convolutional mapping,

and the output mapping for the run. Two trellis' are used to keep track of the data and

allow for shifting of data when paths are selected. The metrics are then calculated for each

data point and the trellis followed to make a final decoding decision. Four different test runs

have been made. The four run parameters are summarized in Table 6.

Name #h' s

MSK 1

multi-h 2

convolu-

tion

convolu-

tional

multi-h

3

Table 6. Simulation Runs

h #g's g k

1/2 1 1.0 1

1.0 11/2, 3/4

1/4

0.2,0.2,0.3

2

2

5.0,2.0

1.0,2.0 2



The program is designedto be flexible to testdifferent parameterslike trellis length, signal
to noiseratio, aswell as the variousdifferent typesof codes. The program will handle up

to 4 values of h, 3 values of g functions, and up to a k value of 7. Trellis lengths of up to

100 are acceptable, and can increase with runs on the Fortran version on the Vax Work-
station.

Simulation Results

The parameters in Table 6 were run varying trellis length, number of data points, and signal

to noise ratio. Figure 11 is a plot of the results of several simulations holding the trellis

length for each type of run a constant for that run, and varying the signal to noise ratio and

number of data points. The theoretical curve for MSK is included for comparison. Table 7

shows the numerical results of each of the simulations. These results appear to be consistent

and within error bounds set in other works, [8,15].

0.1 _

0.001
0.0001

0-OO001

Figure 11 - BER Test Results



Table 7. SimulationResults

Simulation

Combined
Convolution

and
Multi-h

MSK

Multi-h

Eb/No Prob. of error numberof
datapoints

trellis depth

1.0 0.0804 5000 20

1.0

1.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0784

0.086

0.0649

0.0358

0.0079

0.0014

O.000215

0.000036

0.1074

O.1048

1.0

1.0

5000 30

5000 40

100013 20

10000

10000

10000

200000

450O00

10000

10000

20

20

1.0 0.1062

2.0 0.0718

3.0 0.0438

4.0 0.0258

5.0 0.0142

6.0 0.0034

20

20

20

6

10

10000 20

10000 6

10000 6

10000

10000

10000

7.0 0.001 20000

8.0 0.00019 200000

1OOOOO

IO(X)(_

6

6

6

6

0.08774

0.05206

1.0

2.0

3.0 0.02523

4.0 0.01109

5.0

6.0

7.0

0.00393

0.00079

0.000215

6

15

15

1013000 15

100000 15

100000

100000

200000

15

15

15



Table 7. Simulation Results

Simulation Prob. of error

Convolution

F_/No

1.0

2.0

0.0626

0.0245

3.0 0.0048

4.0 0.00144

5.0 0.0002

6.0 0.000027

number of

data points

trellis depth

10000 30

10000 3O

10O013 30

1000013 30

100000 30

9OOOO0 30

Conclusion_:

A computer program has been developed to perform simulations of convolutionally encoded

multi-h signals which is used to generate symbol error rates for various codes and will aid in

determining which codes will be applicable for communication systems. A new type of

trellis has been developed that combines the convolutional states into the multi-h phase trellis

as a combined decoding algorithm. Other research [8], has shown that convolutional coding

applied to the multi-h modulation has a better power bandwidth tradeoff than uncoded multi-

h. Most research has been focused on finding the minimum distance for various codes and

modulation indices [see 15], with few simulations. This program allows the flexibility need-

ed to run many simulations. This program will allow vigorous modeling of various commu-

nications links using rational modulation indices (up to 4 indices), with various convolutional

codes ( rate 1/2 to rate 1/3; with k_< 7) to obtain useful combinations that will reduce
bandwidth.

Increasing the rate of the code and/or increasing the v value gives better gains [2,3] in power

and bandwidth. The lower the h value used, the smaller the bandwidth.

Planned work:

More codes will be simulated using this program in an effort to find good codes that

approach the theoretical lower error bounds. In particular, work will concentrate on larger k

values than has been done in the literature. Codes using v < 4 ( k< 5) have been used.

The case of k=7 will be investigated. Rate 1/3 codes have been shown to give no worth-

while gains [2], therefore only rate 1/2 codes will be investigated. Further work could

include higher rate codes if the current work indicates promise of good gains.
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